精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,AD为斜边BC的高,P为AD的中点,BP交AC于N,NM⊥BC于M.延长BA、MN交于E.求证:
(1)MN=EN;
(2)MN2=AN•NC.

证明:(1)∵AD为斜边BC的高,NM⊥BC,
∴AD∥EM,
∴△BAP∽△BEN,△BPD∽△BNM,
==
=
而P为AD的中点,
∴AP=DP,
∴MN=EN;
(2)∵∠NMC=∠NAE=90°,∠MNC=∠ENA,
∴△MNC∽△ANE,
∴MN:AN=NC:EN,
而MN=EN,
∴MN:AN=NC:MN,
∴MN2=AN•NC.
分析:(1)易得AD∥EM,根据三角形相似的判定方法得到△BAP∽△BEN,△BPD∽△BNM,则==,所以=,然后根据AP=DP即可得到MN=EN;
(2)易得△MNC∽△ANE,根据三角形相似的性质得MN:AN=NC:EN,而MN=EN,则MN:AN=NC:MN,然后根据比例性质即可得到结论.
点评:本题考查了相似三角形的判定与性质:平行于三角形一边的直线被其他两边所截得的三角形与原三角形相似;有两组角对应相等的两三角形相似;相似三角形的对应边的比相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案