精英家教网 > 初中数学 > 题目详情
满足(y+z)1949+(z+x)1999+(x+y)2000=2的整数数组(x,y,z)有(  )
分析:利用已知(y+z)1949+(z+x)1999+(x+y)2000=2可得出x,y,z的取值范围,必定是0,0,1,从而确定解的情况.
解答:解:∵(y+z)1949+(z+x)1999+(x+y)2000=2,且x,y,z为整数,
∴(x+z),(z+x),(x+y)一定有两个1,一个是0,
∴x,y,z中一定有0,0,1.
∴当0,0,1时,有三种可能:即(0,0,1),(0,1,0)(1,0,0).
故选A.
点评:本题主要考查非一次不定方程的知识点,解答本题的关键是理解(x+z),(z+x),(x+y)一定有两个1,一个是0,此题难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
1
6
x+5
,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
1
8
x+
19
4
(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2 50 52 54 56 58
x(年) 1 2 3 4 5
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:
315
≈17.7
319
≈17.8
321
≈17.9

查看答案和解析>>

科目:初中数学 来源: 题型:

我市的公租房建设卓有成效,目前已有部分公租房投入使用,计划从今年起,在未来的10年内解决低收入人群的住房问题,预计第x年竣工并投入使用的公租房面积y(百万平方米)满足这样的关系式:1≤x≤6时,y=-
1
6
x+5
;7≤x≤10时,y=-
1
8
x+
19
4
.同时,政府每年将向租户收取一定的租金,假设每年的公租房全部出租完,另外随着物价上涨等因素的影响,每年的租金也会随之上调,预测:第x年竣工并投入使用的公租房租金z(元/m2)与时间x(年)满足以下表:
z(元/m2 50 52 54 56
x(年) 1 2 3 4
(1)试估计z与x之间的函数类型,并求出该函数表达式;
(2)求政府在哪一年竣工并投入使用的公租房收取的租金最多,最多是多少?
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年竣工投入使用的公租房在原预计总面积不变的情况下,要让人均住房面积比第6年提高a%,这样解决住房的人数将比第6年解决的人数减少1.35a%,求a的值(结果保留整数).(参考数据:172=289,182=324,192=361)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
1
6
x+5
,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
1
8
x+
19
4
(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2 50 52 54 56 58
x(年) 1 2 3 4 5
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:
315
≈17.7
319
≈17.8
321
≈17.9

查看答案和解析>>

同步练习册答案