精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2,点P在线段AD上移动(点P与点A、D不重合),连接PB、PC.
(1)当△ABP∽△PCB时,请写出图中所有与∠ABP相等的角,并证明你的结论;
(2)求(1)中AP的长;
(3)如果PE分别交射线BC、DC于点E、Q,当△ABP∽△PEB时,设AP=x,CQ=y,求y关于x的函数关系式,并写出x的取值范围.

(1)证明:有∠PCB和∠DPC.
∵△ABP∽△PCB,
∴∠ABP=∠PCB,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠DPC=∠ABP.

解:(2)梯形ABCD中,
∵AD∥BC,AB=DC,∴∠A=∠D.
∵∠DPC=∠ABP∴△ABP∽△DPC.

设AP=x,则DP=5-x,

解得x1=1,x2=4,
∴AP=1或4.

解:(3)①当点E在线段BC上时,
∵△ABP∽△PEB,∴∠ABP=∠PEB
∵AD∥BC,∴∠PEB=∠DPQ
∴∠ABP=∠DPQ.
在梯形ABCD中,
∵AB=DC,∴∠D=∠A
∴△ABP∽△DPQ.

∵AP=x,CQ=y,∴PD=5-x,DQ=2+y.


令y>0,即
观察图象得1<x<4,
又∵x>0,5-x>0,
综上所述1<x<4;
②当点E在线段BC的延长线上时,
∵△ABP∽△PEB,∴∠ABP=∠E.
∵AD∥BC,∴∠E=∠DPQ.
∴∠ABP=∠DPQ.
在梯形ABCD中,
∵AB=DC,∴∠D=∠A.
∴△ABP∽△DPQ.

∵AP=x,CQ=y,
∴PD=5-x,DQ=2-y.


令y>0,即
观察图象得x<1或4<x.
又∵x<5,
综上所述:0<x<1或4<x<5.
分析:(1)根据△ABP∽△PCB,得出∠ABP=∠PCB,进而得出∠DPC=∠PCB,∠DPC=∠ABP;
(2)首先证明△ABP∽△DPC,从而得出,即可求出AP的值;
(3)分别从当点E在线段BC上时,②当点E在线段BC的延长线上时,进行分析得出答案即可.
点评:此题主要考查了相似三角形的判定与性质以及二次函数的综合应用,进行分类讨论注意以不要漏解是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案