精英家教网 > 初中数学 > 题目详情
如图所示,P是正方形ABCD的边CD上一点,∠BAP的角平分线交BC于Q,
试说明AP=DP+BQ.
分析:首先根据旋转的性质得出∠E=∠AQB,∠EAD=∠QAB,进而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.
解答:解:将△ABQ绕A逆时针旋转90°得到△ADE,由旋转的性质可得出∠E=∠AQB,
∠EAD=∠QAB,
又∵∠PAE=90°-∠PAQ=90°-∠BAQ=∠DAQ=∠AQB=∠E,
在△PAE中,得AP=PE=DP+DE=DP+BQ.
点评:此题主要考查了旋转的性质以及角边的关系,根据已知得出PE=DP+DE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD的边CD上一点,将△AED绕点A顺时针旋转90°,得到△AFB,则AE与AF有何关系?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,ABCD是正方形,BE⊥BF,BE=BF,试判断AE与FC的位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,E是正方形ABCD的边BC延长线上的点,且BC=CE.
(1)四边形ACED是平行四边形吗?说明理由;
(2)如果AC=
2
,请求出四边形ACED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.

查看答案和解析>>

同步练习册答案