精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,E是正方形ABCD的边BC延长线上的点,且BC=CE.
(1)四边形ACED是平行四边形吗?说明理由;
(2)如果AC=
2
,请求出四边形ACED的面积.
分析:由于CE=BC,因此CE=AD.利用平行四边形的判定方法即可判定四边形ACED是平行四边形.
解答:解:
(1)∵CE=BC,BC=CD=AD,∴CE=AD.
又CE∥AD,∴四边形ACED是平行四边形.

(2)设BC为x,由勾股定理得:x2+x2=(
2
2,∴x=1.
∴CD=CE=1.
∴平行四边形ACED的面积=CE•CD=1.
点评:此题运用了正方形的性质、平行四边形的判定及勾股定理等多方面的知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD的边CD上一点,将△AED绕点A顺时针旋转90°,得到△AFB,则AE与AF有何关系?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,ABCD是正方形,BE⊥BF,BE=BF,试判断AE与FC的位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,P是正方形ABCD的边CD上一点,∠BAP的角平分线交BC于Q,
试说明AP=DP+BQ.

查看答案和解析>>

同步练习册答案