精英家教网 > 初中数学 > 题目详情
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=
12
S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
精英家教网
分析:先作出恰当的辅助线,再利用全等三角形的性质进行解答.
解答:解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,
则S△DEF+S△CEF=
1
2
S△ABC
(2)图2成立;图3不成立.
图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,
又∵∠C=90°,
∴DM∥BC,DN∥AC,
∵D为AB边的中点,
由中位线定理可知:DN=
1
2
AC,MD=
1
2
BC,
∵AC=BC,
∴MD=ND,
∵∠EDF=90°,
∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,
∴∠MDE=∠NDF,
在△DME与△DNF中,
∠DME=∠DNF
MD=ND
∠MDE=∠NDF

∴△DME≌△DNF(ASA),
∴S△DME=S△DNF
∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF
由以上可知S四边形DMCN=
1
2
S△ABC
∴S△DEF+S△CEF=
1
2
S△ABC精英家教网
图3不成立,连接DC,
证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)
∴S△DEF=S五边形DBFEC
=S△CFE+S△DBC
=S△CFE+
S△ABC
2

∴S△DEF-S△CFE=
S△ABC
2

故S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=
1
2
S△ABC
点评:利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案