【题目】如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的面积;
(2)当t为几秒时,BP平分∠ABC;
(3)问t为何值时,△BCP为等腰三角形?
(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
【答案】(1)18;(2)3;(3)t=6s或13s或12s或 10.8s 时△BCP为等腰三角形;(4)t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分
【解析】试题分析:(1)、根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)、因为AB与CB,由勾股定理得AC="4" 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)、分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,t+2t﹣3=6;当P点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.
试题解析:(1)、如图1,由∠C=90°,AB=5cm,BC=3cm,
∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,
∴出发2秒后,则CP=2, ∵∠C=90°, ∴PB==,
∴△ABP的周长为:AP+PB+AB=2+5+=7.
(2)、①如图2,若P在边AC上时,BC=CP=3cm,
此时用的时间为3s,△BCP为等腰三角形;
②若P在AB边上时,有三种情况: i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,
所以用的时间为6s,△BCP为等腰三角形;
ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm, 作CD⊥AB于点D,
在Rt△PCD中,PD===1.8, 所以BP=2PD=3.6cm,
所以P运动的路程为9﹣3.6=5.4cm, 则用的时间为5.4s,△BCP为等腰三角形;
ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm
则所用的时间为6.5s,△BCP为等腰三角形;
综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形
(3)、如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,
∵直线PQ把△ABC的周长分成相等的两部分, ∴t+2t﹣3=3, ∴t=2;
如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,
∵直线PQ把△ABC的周长分成相等的两部分, ∴t﹣4+2t﹣8=6, ∴t=6,
∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.
科目:初中数学 来源: 题型:
【题目】如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为__________,(10,13)表示的电影票是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为( )
A. (﹣9,﹣5)
B. (﹣9,1)
C. (1,﹣5)
D. (1,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,且使A与A′重合,则B、C两点对应点的坐标分别为________,________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是( )
A. 等腰三角形B. 等边三角形
C. 直角三角形D. 等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;
(2)求证:CD=2BE+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为( )
A. 1.7≤x≤1.8 B. 1.705<x<1.715
C. 1.705≤x<1.715 D. 1.705≤x≤1.715
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com