【题目】如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.
(1)求证:FE∥OC;
(2)若∠BOC比∠DFE大20,求∠OFE的度数.
【答案】(1)证明见解析(2)100°
【解析】分析:(1)由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由已知角相等,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证;
(2)由EF与OC平行,利用两直线平行同旁内角互补得到一对角互补,利用等角的补角相等得到∠BOC+∠DFE=180°,结合∠BOC+∠DFE=180°,求出∠OFE的度数即可.
详解:(1)∵AB∥DC,∴∠C=∠A.∵∠1=∠A,∴∠1=∠C,∴FE∥OC;
(2∵FE∥OC,∴∠FOC+∠OFE=180°.∵∠FOC+∠BOC=180°,∠DFE+∠OFE=180°,∴∠BOC+∠DFE=180°.∵∠BOC﹣∠DFE=20°,∴∠BOC+∠DFE=180°,解得:∠DFE=80°,∴∠OFE=100°.
科目:初中数学 来源: 题型:
【题目】一种细胞的直径约为0.000067米,将0.000067用科学记数法表示为( )
A.6.7×105B.6.7×106C.6.7×10-5D.6.7×10-6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.
例如图可以得到,基于此,请解答下列问题:
(1)根据图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,= .
(3) 小明同学用图 中x 张边长为a 的正方形, y张边长为b 的正方形,z 张宽、长分别为 a、b 的长方形纸片拼出一个面积为 (2a+b)(a+2b)长方形,则x+y+z=
【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电影院里,我们常用“几行几列”来描述一张票对应的位置,现引入这样的思想,用如图的两个互相垂直的数轴来描述这样的点位,只不过这个点位信息会有负数甚至0哦。图中正方形网格的边长均为1个单位长。比如图中的点P,我们用(横向对应数值,竖向对应数值)来定义其点位信息,其点位记作(4,-2);再如△ABC,其顶点都在格点上,其中A记作(4,4)、B记作(1,2)、C记作(3,2).请解答下列问题:
(1)将△ABC向下平移5个单位长,再向左平移2个单位长,画出两次平移后得到的△A1B1C1;
(2)给出A1、B1、C1的点位:A1(_____),___)、B1(_____),___)、C1(_____),___);
(3)点E、F点位分别为E(-4,3)、F(0,-3),则线段EF与线段AB的关系为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:
(1)由上面的规律我们可以大胆猜想,得到=________
利用上面的结论,求
(2)的值;
(3)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点.
(1)利用尺规作出∠DAC的平分线AM,连接BE并延长交AM于点F,(要求在图中标明相应字母,保留作图痕迹,不写作法);
(2)试判断AF与BC有怎样的位置关系与数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com