精英家教网 > 初中数学 > 题目详情

已知△ABC与△DEF相似且面积之比为4:9,则△ABC与△DEF的对应边上的高线比为________.

2:3
分析:由△ABC与△DEF相似且面积之比为4:9,可求得△ABC与△DEF相似比,即可求得△ABC与△DEF的对应边上的高线比.
解答:∵△ABC与△DEF相似且面积之比为4:9,
∴△ABC与△DEF相似比为2:3,
∴△ABC与△DEF的对应边上的高线比为2:3.
故答案为:2:3.
点评:本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方与相似三角形对应高的比等于相似比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、已知△ABC与△DEF全等,△ABC的周长为16cm,DE=5cm,EF=6cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,
S△BEF
S△BCD
=
7
9

查看答案和解析>>

科目:初中数学 来源:2012年浙教版初中数学七年级下 1.4全等三角形练习卷(解析版) 题型:选择题

已知△ABC与△DEF全等,∠B与∠F,∠C与∠E是对应角,那么①BC=EF;②∠C的平分线与∠E的平分线相等;③AC边上的高与DE边上的高相等;④AB边上的中线与DE边上的中线相等.其中正确的结论有(  )

A.1个    B.2个     C.3个    D.4个

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,数学公式

查看答案和解析>>

科目:初中数学 来源:2012年安徽省安庆市桐城市孔城初中中考数学二模试卷(解析版) 题型:解答题

如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,

查看答案和解析>>

同步练习册答案