精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.
(1)根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=
1
2
BP,
即t=
1
2
(3-t),t=1(秒),
当∠BPQ=90°时,BP=
1
2
BQ,
3-t=
1
2
t,t=2(秒),
答:当t=1秒或t=2秒时,△PBQ是直角三角形.

(2)过P作PM⊥BC于M,
△BPM中,sin∠B=
PM
PB

∴PM=PB•sin∠B=
3
2
(3-t),
∴S△PBQ=
1
2
BQ•PM=
1
2
•t•
3
2
(3-t),
∴y=S△ABC-S△PBQ
=
1
2
×32×
3
2
-
1
2
•t•
3
2
(3-t),
=
3
4
t2-
3
3
4
t+
9
3
4

∴y与t的关系式为y=
3
4
t2-
3
3
4
t+
9
3
4

假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
2
3

则S四边形APQC=
2
3
S△ABC
3
4
t2-
3
3
4
t+
9
3
4
=
2
3
×
1
2
×32×
3
2

∴t2-3t+3=0,
∵(-3)2-4×1×3<0,
∴方程无解,
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的
2
3


(3)在Rt△PQM中,∵MQ=|BM-BQ|=|
3
2
(1-t)|,
MQ2+PM2=PQ2
∴x2=[
3
2
(1-t)]2+[
3
2
(3-t)]2
=
9
4
(t2-2t+1)+
3
4
(9-6t+t2),
=
3
4
(4t2-12t+12)=3t2-9t+9,
∴t2-3t=
1
3
(x2-9),
∵y=
3
4
t2-
3
3
4
t+
9
3
4

∴y=
3
4
t2-
3
3
4
t+
9
3
4
=
3
4
×
1
3
(x2-9)+
9
3
4
=
3
12
x2+
3
3
2

∴y与x的关系式为y=
3
12
x2+
3
3
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来的利润情况可以看做是抛物线的一部分,请结合下面的图象解答以下问题:
(1)求该抛物线对应的二次函数的解析式;
(2)该公司在经营此款电脑过程中,第几个月的利润最大,最大利润是多少;
(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损何时亏损)作出预测.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD.直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______.
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P,使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知直线y=-
3
3
x+
2
3
3
交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示.
(1)求图A中的点B的坐标;
(2)求α的值;
(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;图2为二次函数y=ax2(a>0)的图象.
(1)如图l,求证:
AB
CD
=
1
2

(2)如图2,探索:
AB
CD
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中,矩形OABC的对角线AC所在直线解析式为y=-
3
3
x+1.
(1)在x轴上存在这样的点M,使AMB为等腰三角形,求出所有符合要求的点M的坐标;
(2)动点P从点C开始在线段CO上以每秒
3
个单位长度的速度向点O移动,同时,动点Q从点O开始在线段OA上以每秒1个单位长度的速度向点A移动.设P、Q移动的时间为t秒.
①是否存在这样的时刻2,使△OPQ与△BCP相似,并说明理由;
②设△BPQ的面积为S,求S与t间的函数关系式,并求出t为何值时,S有最小值.

查看答案和解析>>

同步练习册答案