精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.
(1)由题意得,
-2×9-3b+c=0
c=6

解得
b=-4
c=6

所以,此二次函数的解析式为y=-2x2-4x+6;

(2)∵y=-2x2-4x+6=-2(x+1)2+8,
∴函数y=2x2-4x+6的顶点坐标为(-1,8),
∴向右平移5个单位的后的顶点C(4,8),
设直线BC的解析式为y=kx+b(k≠0),
b=6
4k+b=8

解得
k=
1
2
b=6

所以,直线BC的解析式为y=
1
2
x+6,
令y=0,则
1
2
x+6=0,
解得x=-12,
∴点D的坐标为(-12,0),
过点A作AH⊥BD于H,
OD=12,BD=
OB2+OD2
=
62+122
=6
5

AD=-3-(-12)=-3+12=9,
∵∠ADH=∠BDO,∠AHD=∠BOD=90°,
∴△ADH△BDO,
AH
OB
=
AD
BD

AH
6
=
9
6
5

解得AH=
9
5
5

∵AB=
OA2+OB2
=
32+62
=3
5

∴sin∠ABD=
AH
AB
=
9
5
5
3
5
=
3
5


(3)ABOC.
理由如下:方法一:∵BD=6
5
,BC=
(4-0)2+(8-6)2
=2
5
,AD=9,AO=3,
BD
BC
=
AD
AO
=3,
∴ABOC;
方法二:过点C作CP⊥x轴于P,
由题意得,CP=8,PO=4,AO=3,BO=6,
∴tan∠COP=
CP
OP
=
8
4
=2,
tan∠BAO=
OB
OA
=
6
3
=2,
∴tan∠COP=tan∠BAO,
∴∠BAO=∠COP,
∴ABOC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=ax2+bx+c的图象与x轴、y轴都只有一个交点,分别为A、B且AB=2,又关于x的方程x2-(b+2ac)x+m=0(m<0)的两个实数根互为相反数.
(1)求ac的值;
(2)求二次函数的解析式;
(3)过A点的直线与二次函数图象相交于另一个点C,与y轴的负半轴相交于点D,且使△ABD和△ABC的面积相等,求此直线的解析式并求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知二次函数图象的顶点为原点,直线y=
1
2
x+4
的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x=
1
2
时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MNBC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x.
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1234
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰直角三角形的斜边长为x,面积为y,则y与x的函数关系式为______.

查看答案和解析>>

同步练习册答案