精英家教网 > 初中数学 > 题目详情
如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?
设窗户的长为xcm,面积为y,则窗户的宽为(200-x)cm,
根据题意得:y=(x-10)(200-x-10)=-(x-100)2+8100,
∴当x=100时有最大面积,
∴200-x=200-100=100cm,
∴窗户的两边长分别是100cm,100cm
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD.直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______.
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P,使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3),
(l)求抛物线的函数关系式;
(2)若点D(4,m)是抛物线y=ax2+bx+c上一点,请求出m的值,并求出此时△ABD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明代表班级参加校运会的铅球项目,他想:“怎样才能将铅球推得更远呢”,于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿与水平线成30°、45°、60°方向推了三次.铅球推出后沿抛物线形运动.如图,小明推铅球时的出手点距地面2m,以铅球出手点所在竖直方向为y轴、地平线为x轴建立直角坐标系,分别得到的有关数据如下表:
铅球的方向与水平线的夹角300450600
铅球运行所得到的抛物线解析式y1=-0.06(x-3)2+2.5y2=
______(x-4)2+3.6
y3=-0.22(x-3)2+4
估测铅球在最高点的坐标P1(3,2.5)P2(4,3.6)P3(3,4)
铅球落点到小明站立处的水平距离9.5m

______m
7.3m
(1)请你求出表格中两横线上的数据,写出计算过程,并将结果填入表格中的横线上;
(2)请根据以上数据,对如何将铅球推得更远提出你的建议.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;要使制作的窗户面积最大,那么窗户的高是______米,窗户的最大面积是______平方米.

查看答案和解析>>

同步练习册答案