精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
(1)①对称轴x=-
4
2
=-2;
②当y=0时,有x2+4x+3=0,
解之,得x1=-1,x2=-3,
∴点A的坐标为(-3,0).

(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3).

(3)存在.
当x=0时,y=x2+4x+3=3
∴点C的坐标为(0,3),
∵DEy轴,AO=3,EO=2,AE=1,CO=3,
∴△AED△AOC
AE
AO
=
DE
CO
1
3
=
DE
3

∴DE=1.
∴S梯形DEOC=
1
2
(1+3)×2=4,
在OE上找点F,使OF=
4
3

此时S△COF=
1
2
×
4
3
×3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M.
设直线CM的解析式为y=kx+3,它经过点F(-
4
3
,0).
则-
4
3
k+3=0,(11分)
解之,得k=
9
4

∴直线CM的解析式为y=
9
4
x+3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为10.0m(含拱圈厚度和拉杆长度),横向分跨CD为40.0m.
(1)试在示意图(图(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;
(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=-
3
3
x2+mx+
3
与x轴交于A、B两点,与y轴交于点C,A点坐标为(-1,0)
(1)求m的值和点B的坐标;
(2)过A、B、C的三点的⊙M交y轴于另一点D,设P为弧CBD上的动点P(P不与C、D重合),连接AP交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请求出常数k;如果不存在,请说明理由;
(3)连接DM并延长交BC于N,交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,试探究BC与FG的位置关系,并求直线FG的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的图象经过(0,3),(-2,-5)和(1,4)三点,则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
9
2
).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EFAC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示是二次函数y=-x2+4x图象上的一段,其中0≤x≤4、若矩形ABCD的两个顶点A,B落在x轴上,另外两个顶点C,D落在函数图象上,则矩形ABCD的周长能否恰好为8?若能,请求出C,D两点坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+(2m-1)x+m2-1(m为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设(1)中的抛物线与x轴的另一个交点为Q,抛物线的顶点为P,试求经过O、P、Q三点的圆的圆心O′的坐标;
(3)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C,
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案