精英家教网 > 初中数学 > 题目详情
已知等腰直角三角形的斜边长为x,面积为y,则y与x的函数关系式为______.
已知如图所示:
∵AC=BC,AC⊥BC,S△ABC=y.AB=x,
∴AC2+BC2=x2
∴2AC2=x2
AC2=
x2
2

∵S△ABC=
1
2
AC•BC=
1
2
AC2=y,
∴y=
1
2
×
x2
2
=
x2
4

故答案为:y=
x2
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y1=ax2+bx+c的顶点坐标为(2,1),且经过点B(
5
2
3
4
),抛物线对称轴左侧与x轴交于点A,与y轴相交于点C.
(1)求抛物线解析式y1和直线BC的解析式y2
(2)连接AB、AC,求△ABC的面积.
(3)根据图象直接写出y1<y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P,使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2).
(1)请在给出的直角坐标系xOy中画出△ABC,设AC交X轴于点D,连接BD,证明:OD平分∠ADB;
(2)请在x轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知直线y=-
3
3
x+
2
3
3
交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示.
(1)求图A中的点B的坐标;
(2)求α的值;
(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线的对称轴为直线x=4,该抛物线与x轴交于A、B两点,与y轴交于C点,且A、C坐标为(2,0)、(0,3).
(1)求此抛物线的解析式;
(2)抛物线上有一点P,使以PC为直径的圆过B点,求P的坐标;
(3)在满足(2)的条件下,x轴上是否存在点E,使得△COE与△PBC相似?若存在,求出E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;要使制作的窗户面积最大,那么窗户的高是______米,窗户的最大面积是______平方米.

查看答案和解析>>

同步练习册答案