精英家教网 > 初中数学 > 题目详情
如图所示,已知抛物线的对称轴为直线x=4,该抛物线与x轴交于A、B两点,与y轴交于C点,且A、C坐标为(2,0)、(0,3).
(1)求此抛物线的解析式;
(2)抛物线上有一点P,使以PC为直径的圆过B点,求P的坐标;
(3)在满足(2)的条件下,x轴上是否存在点E,使得△COE与△PBC相似?若存在,求出E的坐标;若不存在,请说明理由.
(1)设抛物线的解析式是y=a(x-4)2+b,
根据题意得:
4a+b=0
16a+b=3

解得:
a=
1
4
b=-1

则函数的解析式是:y=
1
4
x2-2x+3;

(2)设点B坐标为B(a,0),则
2+a
2
=4(抛物线对称轴的表示),
解得a=6,
∴点B(6,0),
又∵点C坐标为C(0,3),PC为直径的圆过B点,
∴过P作PE⊥x轴,则△PBE△BCO,

PE
BE
=
OB
OC
=
6
3
=2,
∴设点P的坐标为(m,n),
则n=2(m-6)①,
又点P在抛物线上,
∴n=
1
4
m2-2m+3②,
①②联立解得m1=10,m2=6(舍去),
∴n=2(10-6)=8,
∴点P的坐标为P(10,8);

(3)∵PE⊥x轴,
∴在Rt△PBE中,PB
(10-6)2+82
=4
5

在Rt△OBC中,BC=
32+62
=3
5

设点E坐标为(x,0),
∵△COE与△PBC相似,
∴①若CO与PB是对应边,则
3
4
5
=
|x|
3
5

解得|x|=
9
4

∴x=±
9
4

②若CO与BC是对应边,则
3
3
5
=
|x|
4
5

解得|x|=4,
∴x=±4,
∴在x轴上存在点E,使得△COE与△PBC相似,点E坐标为E(±
9
4
,0),E(±4,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知二次函数图象的顶点为原点,直线y=
1
2
x+4
的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2
(1)求y与x的函数表达式;
(2)求当边长增加多少时,面积增加8cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.
(1)求该抛物线的函数关系式和对称轴;
(2)试判断△AMN的形状,并说明理由;
(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰直角三角形的斜边长为x,面积为y,则y与x的函数关系式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某瓜果基地市场部为指导某地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息.如图甲、乙两图.
注:两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低;图甲的图象是线段,图乙的图象是抛物线.
(1)在3月份出售这种蔬菜,每千克的收益(收益=售价-成本)是多少元
(2)设x月份出售这种蔬菜,每千克收益为y元,求y关于x的函数解析式;
(3)问哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?

查看答案和解析>>

同步练习册答案