精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2).
(1)请在给出的直角坐标系xOy中画出△ABC,设AC交X轴于点D,连接BD,证明:OD平分∠ADB;
(2)请在x轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式.
(1)画图如右∵OA=2=OB,OD⊥AB,
即OD垂直平分AB,
∴DA=DB.
从而OD平分∠ADB.(3分)

(2)过点C作CE⊥x轴,E为垂足,则E(4,0),
使四边形AOCE为平行四边形.
理由如下:∵AO=2=CE,
又AO⊥x轴,CE⊥x轴?AOCE,
∴四边形AOCE是平行四边形.(7分)

(3)设过A(0,2),C(4,-2)的解析式为y=k1x+b1
b1=2
4k1+b1=-2
?
k1=-1
b1=2

∴直线AC的解析式为y=-x+2.
令y=0,得x=2.
故D的坐标为(2,0).(9分)
由于抛物线关于CE对称,
故D关于CE的对称点D′(6,0)也在抛物线上,
所以抛物线过B(0,-2),D(2,0),D′(6,0).
设抛物线解析式为y=ax2+bx+c,
则有
c=-2
4a+2b+c=0
36a+6b+c=0
?
a=-
1
6
b=
4
3
c=-2

∴抛物线解析式为y=-
1
6
x2+
4
3
x-2=-
1
6
(x-4)2+
2
3

其顶点为F(4,
2
3
)
.(12分)
设经过F(4,
2
3
)
,A(0,2)的解析式为y=k2x+b2
4k2+b2=
2
3
b2=2
?
k2=-
1
3
b2=2

∴直线FA的解析式为y=-
1
3
x+2
.(14分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在抛物线y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式.
(2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标.
(3)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(4)设从出发起,运动了t秒.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=ax2+bx+c的图象与x轴、y轴都只有一个交点,分别为A、B且AB=2,又关于x的方程x2-(b+2ac)x+m=0(m<0)的两个实数根互为相反数.
(1)求ac的值;
(2)求二次函数的解析式;
(3)过A点的直线与二次函数图象相交于另一个点C,与y轴的负半轴相交于点D,且使△ABD和△ABC的面积相等,求此直线的解析式并求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MNBC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x.
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1234
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰直角三角形的斜边长为x,面积为y,则y与x的函数关系式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQBD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+
3
3
PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.

查看答案和解析>>

同步练习册答案