精英家教网 > 初中数学 > 题目详情
13.若关于x的方程$\frac{{x}^{2}-4x+a}{x-3}$=0有增根,则增根x=3,a的值为3.

分析 增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-3=0,得到x=3,然后代入整式方程算出未知字母的值.

解答 解:方程两边都乘(x-3),得
x2-4x+a=0,
∵原方程有增根,
∴最简公分母x-3=0,即x=3,
把x=3代入整式方程,得a=3.
故答案为:3,3.

点评 本题考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0,确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图所示,用尺规作一个直角三角形,使其中的一个锐角为∠α,这个锐角和直角的夹边为a.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列事件是随机事件的是(  )
A.没有水分,种子发芽B.367人中至少有2人的生日相同
C.在标准气压下,-1℃冰融化D.小明买了一张彩票中奖

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=ax2+bx-3与x轴交于A(-1,0),B两点(点A在点B左侧),与y轴交于点C,且对称轴为x=1,点D为顶点,连接BD、CD,抛物线的对称轴与x轴交于点E.
(1)求抛物线的解析式及点D的坐标;
(2)若抛物线对称轴右侧上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标;
(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以$\sqrt{5}$个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤$\frac{4}{5}$)秒,求使得△D'PQ与△PQB重叠部分的面积为△DPQ面积的$\frac{1}{2}$时对应的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在实数范围内分解因式:x2-6x+9=(x-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.尺规作图(保留作图痕迹,不写作法)
如图,已知线段a,h,求作以a为底、h为高的等腰三角形ABC,使AC=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.
(1)求证:PA•PB=PD•PC;
(2)若PA=$\frac{45}{4}$,AB=$\frac{19}{4}$,PD=DC+2,求点O到PC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.

查看答案和解析>>

同步练习册答案