精英家教网 > 初中数学 > 题目详情

如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.
(1)求证:直线EF是⊙O的切线;
(2)若点C是弧AB的中点,sin∠DAB=数学公式,求△CBD的面积.

(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°即∠ADC+∠CDB=90°,
∵∠ADC=∠ABC,∠CBF=∠CDB,
∴∠ABC+∠CBF=90°即∠ABF=90°,
∴AB⊥EF
∴EF是⊙O的切线;

(2)解:作BG⊥CD,垂足是G,
在Rt△ABD中
∵AB=10,sin∠DAB=
又∵sin∠DAB=
∴BD=6
∵C是弧AB的中点,
∴∠ADC=∠CDB=45°,
∴BG=DG=BD×sin45°=6×=3
∵∠DAB=∠DCB
∴tan∠DCB==
∴CG=
∴CD=CG+DG=4+3=7
∴S△CBD=CD•BG==21.
分析:(1)先由AB是⊙O的直径可得出∠ADB=90°,再根据∠ADC=∠ABC,∠CBF=∠CDB即可得出∠ABF=90°,故EF是⊙O的切线;
(2)作BG⊥CD,垂足是G,在Rt△ABD中,AB=10,sin∠DAB=可求出BD的长,再由C是弧AB的中点,可知∠ADC=∠CDB=45°,根据BG=DG=BDsin45°可求出BG的长,由∠DAB=∠DCB可得出CG的长,进而得出CD的长,利用三角形的面积公式即可得出结论.
点评:本题考查的是切线的判定定理,涉及到圆周角定理、解直角三角形及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案