精英家教网 > 初中数学 > 题目详情
α为锐角,当
1
1-tanα
无意义时,sin(α+15°)+cos(α-15°)的值为(  )
A、
3
B、
3
2
C、
3
3
D、
2
3
3
分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.
解答:解:∵
1
1-tanα
无意义,
∴1-tanα=0,即tanα=1,
∴锐角α=45°.
∴sin(α+15°)+cos(α-15°)=sin60°+cos30°=
3
2
+
3
2
=
3

故选A.
点评:本题考查了分式无意义的条件及特殊角的三角函数值,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a为锐角,当
11-tana
无意义时,求sin(a+15°)+cos(a-15°)的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知a为锐角,当
1
1-tana
无意义时,求sin(a+15°)+cos(a-15°)的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

α为锐角,当
1
1-tanα
无意义时,sin(α+15°)+cos(α-15°)的值为(  )
A.
3
B.
3
2
C.
3
3
D.
2
3
3

查看答案和解析>>

同步练习册答案