精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形纸片ABCD中,AB6 cmBC8 cm,点EBC边上一点,连接AE,并将AEB沿AE折叠,得到AEB′,以CEB′为顶点的三角形是直角三角形时,BE的长为____cm.

【答案】3或6

【解析】试题解析:①∠B′EC=90°时,如图1,∠BEB′=90°,


由翻折的性质得∠AEB=AEB=×90°=45°
∴△ABE是等腰直角三角形,
BE=AB=6cm
②∠EBC=90°时,如图2
由翻折的性质∠AB′E=B=90°
AB′C在同一直线上,
AB′=ABBE=B′E
由勾股定理得,AC==10cm
BC=10-6=4cm
BE=B′E=x,则EC=8-x
RtBEC中,B′E2+B′C2=EC2
x2+42=8-x2
解得x=3
BE=3cm
综上所述,BE的长为36cm
故答案为:36

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强公民的节约意识,合理利用天然气资源,某市自11日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:

每月用气量

单价(元/m3

不超出80m3的部分

2.5

超出80m3不超出130m3的部分

a

超出130m3的部分

a+0.5

(1)若甲用户3月份用气125m3,缴费335元,求a的值;

(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.

求证:(1)ABE≌△CDF;

(2)四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,动点P从点B出发沿BC方向以每秒5个单位的速度向终点C运动,过点P作PE⊥AB于点E,过点P作PF∥BA,交AC于点F,设点P运动的时间为t秒.若以PE所在的直线为对称轴,线段BD经轴对称变换后的图形为B'D',求当线段B'D'与线段AC有交点这段过程中,线段B'D'扫过的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 3个单位/秒的速度向右运动.

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;

(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象

(1)求出图中ma的值.

(2)求出甲车行驶的路程y(km)与时间x(h)的函数关系式,并写出相应的x的取值范围.

(3)当乙车行驶多长时间时,两车恰好相距50 km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin , 且满足 ,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2 x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB边上的两个动点,满足∠DCE=45°.
(1)如图②,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK.
①求证:△DCE≌△KCE.
②求证:DE2=AD2+BE2
③思考与探究:当点D从点A向AB的中点运动的过程中,请尝试写出DE长度的变化趋势 ;并直接写出DE长度的最大值或最小值 (标明最大值或最小值).
(2)如图③,若△CDE的外接圆⊙O分别交AC,BC于点F、G,求证:CF:CG=BE:AD.

查看答案和解析>>

同步练习册答案