精英家教网 > 初中数学 > 题目详情

作业宝如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于F,作EG⊥DC于G,则下列结论中:①EA=EG;②∠BAD=∠C;③△AEF为等腰三角形;④AF=FD.其中正确结论的个数为


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:根据角平分线性质推出EG=AE,根据三角形内角和定理和角的计算求出∠ABC+∠BAD=90°,∠C+∠ABC=90°,推出∠C=∠BAD,根据三角形外角性质得出∠AFE=∠AEF,推出AE=AF,过F作FM⊥AB于M,根据角平分线性质得出FM=FD,根据斜边大于直角边即可推出AF>FD(FM).
解答:∵BE平分∠ABC,∠BAC=90°,AD⊥BC,
∴AE=EG,∴①正确;
∵AD⊥BC,∠BAC=90°,
∴∠ADB=∠BAC=90°,
∴∠ABC+∠BAD=90°,∠C+∠ABC=90°,
∴∠C=∠BAD,∴②正确;
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵∠C=∠BAD,
∴∠BAD+∠ABE=∠C+∠CBE,
即∠AFE=∠AEF,
∴AE=AF,
∴△AEF是等腰三角形,∴③正确;
过F作FM⊥AB于M,
∵BE平分∠ABC,AD⊥BC,
∴FM=FD,
在Rt△AMF中,∠AMF=90°,斜边AF大于直角边FM,
∴AF>FD,∴④错误;、
即正确的个数是3个.
故选C.
点评:本题考查了三角形内角和定理,角平分线性质,三角形外角性质,等腰三角形的判定的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案