精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,若点P和点关于y轴对称,点和点关于直线l对称,则称点是点P关于y轴,直线l的二次对称点.

如图1,点

若点B是点A关于y轴,直线的二次对称点,则点B的坐标为______

若点是点A关于y轴,直线的二次对称点,则a的值为______

若点是点A关于y轴,直线的二次对称点,则直线的表达式为______

如图2的半径为上存在点M,使得点是点M关于y轴,直线的二次对称点,且点在射线上,b的取值范围是______

x轴上的动点,的半径为2,若上存在点N,使得点是点N关于y轴,直线的二次对称点,且点y轴上,求t的取值范围.

【答案】(1)①B(3,0);②a=-2;③y=-x+2;(2);(3).

【解析】

根据二次对称点的定义,分别画出图形,即可解决问题.

根据二次对称点的定义,画出图形,求出b的最大值以及最小值即可解决问题.

如图6中,设点E关于y轴的对称点为关于直线的对称点为,易知当点N上运动时,点上运动,由此可见当y轴相切或相交时满足条件想办法求出点的坐标即可解决问题.

解:如图1中,点关于y轴的对称点关于直线的对称点

如图2中,由题意、C关于直线对称,


如图3中,
直线的解析式为,线段的中垂线的解析式为
直线的解析式为

故答案分别为
如图4中,

由题意,由此可知,当的值最大时,可得b的最大值,
直线的解析式为

,易知,时,的值最大,最大值为2,
的最大值为1,
如图5中,易知当点M在x轴的正半轴上时,可得b的最小值,最小值为

综上所述,满足条件的b取值范围为
故答案为

如图6中,设点E关于y轴的对称点为关于直线的对称点为,易知当点N在上运动时,点上运动,由此可见当与y轴相切或相交时满足条件.

连接交直线于K,易知直线的解析式为
解得



与y轴相切时,,解得
综上所述,满足条件的t的取值范围为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】201265日是世界环境日,南宁市某校举行了绿色家园演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).

1)分数段在-----范围的人数最多;

2)全校共有多少人参加比赛?

3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用列表法树形图法表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx24x轴交于点AB(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D

1)求线段AD的长;

2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C(﹣1,﹣1),且经过点A、点B和坐标原点O,点B的横坐标为﹣3.

(1)求抛物线的解析式.

(2)求点B的坐标及△BOC的面积.

(3)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为顶点的四边形为平行四边形,请在左边的图上标出D和E的位置,再直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线 与双曲线的一个交点为P(2,m),与x轴、y轴分别交于点A,B.

(1)求m的值;

(2)若PA=2AB,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点.

求抛物线的函数表达式;

求抛物线的顶点坐标,直接写出当时,x的取值范围;

设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,某校开展经典诵读比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.

1)小礼诵读《论语》的概率是   ;(直接写出答案)

2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;

2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;

3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步练习册答案