精英家教网 > 初中数学 > 题目详情
3.在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为$\widehat{AD}$上-
点,且$\widehat{AF}$=$\widehat{BC}$ 连接DF,并延长DF交BA的延长线于点E.
(1)判断DB与DA的数量关系,并说明理由;
(2)求证:△BCD≌△AFD;
(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.

分析 (1)由CD是△ABC的外角平分线,可得∠MCD=∠ACD,又由∠MCD+∠BCD=180°,∠BCD+∠BAD=180°,可得∠MCD=∠BAD,继而证得∠ABD=∠BAD,即可得DB=DA;
(2)由DB=DA,可得$\widehat{DB}$=$\widehat{DA}$,即可得$\widehat{AF}$=$\widehat{BC}$,则可证得CD=FD,BC=AF,然后由SSS判定△BCD≌△AFD;
(3)首先连接DO并延长,交AB于点N,连接OB,由∠ACM=120°,易证得△ABD是等边三角形,并可求得边长,易证得△ACD∽△EBD,然后由相似三角形的对应边成比例,求得DE的长.

解答 解:(1)DB=DA.
理由:∵CD是△ABC的外角平分线,
∴∠MCD=∠ACD,
∵∠MCD+∠BCD=180°,∠BCD+∠BAD=180°,
∴∠MCD=∠BAD,
∴∠ACD=∠BAD,
∵∠ACD=∠ABD,
∴∠ABD=∠BAD,
∴DB=DA;

(2)证明:∵DB=DA,
∴$\widehat{DB}$=$\widehat{DA}$,
∵$\widehat{AF}$=$\widehat{BC}$,
∴AF=BC,$\widehat{CD}$=$\widehat{FD}$,
∴CD=FD,
在△BCD和△AFD中,
$\left\{\begin{array}{l}{BC=AF}\\{CD=FD}\\{DB=DA}\end{array}\right.$,
∴△BCD≌△AFD(SSS);

(3)连接DO并延长,交AB于点N,连接OB,
∵DB=DA,
∴$\widehat{DB}$=$\widehat{DA}$,
∴DN⊥AB,
∵∠ACM=120°,
∴∠ABD=∠ACD=60°,
∵DB=DA,
∴△ABD是等边三角形,
∴∠OBA=30°,
∴ON=$\frac{1}{2}$OB=$\frac{1}{2}$×5=2.5,
∴DN=ON+OD=7.5,
∴BD=$\frac{DN}{sin60°}$=5$\sqrt{3}$,
∴AD=BD=5$\sqrt{3}$,
∵$\widehat{BC}$=$\widehat{AF}$,
∴$\widehat{AC}$=$\widehat{BF}$,
∴∠ADC=∠BDF,
∵∠ABD=∠ACD,
∴△ACD∽△EBD,
∴$\frac{CD}{BD}=\frac{AD}{DE}$,
∴$\frac{6}{5\sqrt{3}}=\frac{5\sqrt{3}}{DE}$,
∴DE=12.5.

点评 此题属于圆的综合题,考查了圆周角定理、弧与弦的关系、等边三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上:
(1)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);
(2)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(-3,-2),并画出旋转后的△A1B1C1
(3)在(2)中△ABC旋转过程中,求CA所扫过区域的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了解某校学生的身高情况,随机抽取该校若干名学生进行抽样调查.利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:
(1)在样本中,学生的身高众数在B组,中位数在C组;
(2)若将学生身高情况绘制成扇形统计图,则C组部分的圆心角为90°;
(3)已知该校共有学生2000人,请估计身高在165及以上的学生约有多少人?
身高情况分组表(单位:cm)
组别身高
Ax<155
B155≤x<160
C160≤x<165
D165≤x<170
Ex≥170

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知直线y=ax+b与双曲线y=$\frac{k}{x}$(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.根据要求,解答下列问题
(1)解下列方程组(直接写出方程组的解即可)
①$\left\{\begin{array}{l}{x+2y=3}\\{2x+y=3}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$   ②$\left\{\begin{array}{l}{3x+2y=10}\\{2x+3y=10}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$  ③$\left\{\begin{array}{l}{2x-y=4}\\{-x+2y=4}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$
(2)以上每个方程组的解中,x值与y值的大小关系为x=y.
(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3$\sqrt{5}$,且∠ECF=45°,则CF的长为(  )
A.2$\sqrt{10}$B.3$\sqrt{5}$C.$\frac{5}{3}\sqrt{10}$D.$\frac{10}{3}\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有(3n+1)个三角形(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算:2$\sqrt{\frac{1}{3}}$×$\sqrt{9}$-$\sqrt{12}$+$\root{3}{\frac{7}{8}-1}$.

查看答案和解析>>

同步练习册答案