精英家教网 > 初中数学 > 题目详情

已知AB是⊙O的直径,点P是AB延长线上一点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP=________.

45°
分析:由PC为圆的切线,利用切线的性质得到PC与OC垂直,得到三角形OPC为直角三角形,利用直角三角形的两锐角互余列出等式,根据OA=OC,利用等边对等角得到一对角相等,利用外角性质得到∠A为∠COP的一半,由PD为角平分线得到∠APD为∠CPO的一半,利用外角性质及等式的性质即可‘求出∠CDP的度数.
解答:∵PC为圆O的切线,
∴PC⊥OC,即∠PCO=90°,
∴∠CPO+∠COP=90°,
∵OA=OC,
∴∠A=∠ACO=∠COP,
∵PD为∠APC的平分线,
∴∠APD=∠CPD=∠CPO,
∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.
故答案为:45°
点评:此题考查了切线的性质,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,∠CAB=30°,过点C的⊙O的切线交AB延长线于D,若OD=4
3
,那么弦AC长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,点C在⊙O上,直线CD与AB的延长线交于点D,∠COB=2∠DCB.精英家教网
(1)求证:CD是⊙O的切线;
(2)点E是
AB
的中点,CE交AB于点F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,AD切⊙O于点A,
EC
=
CB
.给出下列结论:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正确的结论有
①②④
①②④
.(把你认为正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知AB是⊙O的直径,弧AC的度数是30°.如果⊙O的直径为4,那么AC2等于(  )

查看答案和解析>>

同步练习册答案