
解:(1)y=MP+MQ=2t;
(2)当BP=1时,有两种情形:
①如图1,若点P从点M向点B运动,有MB=

=4,MP=MQ=3,
∴PQ=6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴

.
∵AB=

,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为

.
②若点P从点B向点M运动,由题意得t=5.
PQ=BM+MQ-BP=8,PC=7.
设PE与AD交于点F,QE与AD或AD的延长线交于点G,
过点P作PH⊥AD于点H,
则HP=

,AH=1.
在Rt△HPF中,∠HPF=30°,
∴HF=3,PF=6.∴FG=FE=2.又∵FD=2,
∴点G与点D重合,如图2.
此时△EPQ与梯形ABCD的重叠部分就是梯形FPCG,其面积为

.
(3)能,
此时,4≤t≤5.
过程如下:

如图,当t=4时,P点与B点重合,Q点运动到C点,
此时被覆盖线段的长度达到最大值,
∵△PEQ为等边三角形,
∴∠EPC=60°,
∴∠APE=30°,
∵

,
∴AF=3,BF=6,
∴EF=FG=2,
∴GD=6-2-3=1,
所以Q向右还可运动1秒,FG的长度不变,
∴4≤t≤5.
分析:(1)根据路程公式直接写出PQ的长度y;
(2)当BP=1时,有两种情况:①点P从点M向点B运动,通过计算可知,MP=MQ=3,即PQ=6,连接EM,根据等边三角形的性质可求EM=3

,此时EM=AB,重叠部分为△PEQ的面积;②点P从点B向点M运动,此时t=5,MP=3,MQ=5,△PEQ的边长为8,过点P作PH⊥AD于点H,在Rt△PHF中,已知PH,∠HPF=30°,可求FH、PF、FE,证明等边△EFG中,点G与点D重合,此时重叠部分面积为梯形FPCG的面积;根据梯形面积公式求解;
(3)由图可知,当t=4时,P、B重合,Q、C重合,线段AD被覆盖长度达到最大值,由(2)可知,当t=5时,线段EQ经过D点,长度也是最大值,故t的范围在4与5之间.
点评:本题考查了动点与图形面积问题,需要通过题目的条件,分类讨论,利用特殊三角形,梯形的面积公式进行计算.