精英家教网 > 初中数学 > 题目详情
8、当x=
-1或3
时,代数式3-x和-x2+3x的值互为相反数.
分析:两式互为相反数,它们的和为0,则可列出方程3-x+(-x2+3x)=0,化为一般形式以后,利用因式分解法即可求解.
解答:解:依题意得:3-x+(-x2+3x)=0
即-x2+2x+3=0
∴x2-2x-3=0
解得x=-1或3.
点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:两个正整数的和与积相等,求这两个正整数.
解:不妨设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,(*)
则ab=a+b≤b+b=2b,所以a≤2,
因为a为正整数,所以a=1或2,
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考是否存在三个正整数,它们的和与积相等试说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:两个正整数的和与积相等,求这两个正整数.
解:设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,…(*)
则ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因为a为正整数,所以a=1或2.
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仿照以上阅读材料的解法解答下列问题:
已知:三个正整数的和与积相等,求这三个正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:两个正整数的和与积相等,求这两个正整数.
解:设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,…(*)
则ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因为a为正整数,所以a=1或2.
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仿照以上阅读材料的解法解答下列问题:
已知:三个正整数的和与积相等,求这三个正整数.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《不等式与不等式组》(03)(解析版) 题型:解答题

(2004•淮安)已知:两个正整数的和与积相等,求这两个正整数.
解:不妨设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,(*)
则ab=a+b≤b+b=2b,所以a≤2,
因为a为正整数,所以a=1或2,
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考是否存在三个正整数,它们的和与积相等试说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省淮安市中考数学试卷(解析版) 题型:解答题

(2004•淮安)已知:两个正整数的和与积相等,求这两个正整数.
解:不妨设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,(*)
则ab=a+b≤b+b=2b,所以a≤2,
因为a为正整数,所以a=1或2,
①当a=1时,代入等式(*),得1•b=1+b,b不存在;
②当a=2时,代入等式(*),得2•b=2+b,b=2.
所以这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考是否存在三个正整数,它们的和与积相等试说明你的理由.

查看答案和解析>>

同步练习册答案