精英家教网 > 初中数学 > 题目详情

已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(数学公式),求当x≥1时y1的取值范围.

解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c),经过A(1,0),
把点代入函数即可得到:b=-a-c;

(2)B在第四象限.
理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),

所以抛物线与x轴有两个交点,
又因为抛物线不经过第三象限,
所以a>0,且顶点在第四象限;

(3)∵,且在抛物线上,
∴b+8=0,∴b=-8,
∵a+c=-b,∴a+c=8,
把B、C两点代入直线解析式易得:c-a=4,

解得:
如图所示,C在A的右侧,
∴当x≥1时,
分析:(1)抛物线经过A(1,0),把点代入函数即可得到b=-a-c;
(2)判断点在哪个象限,需要根据题意画图,由条件:图象不经过第三象限就可以推出开口向上,a>0,只需要知道抛物线与x轴有几个交点即可解决,
判断与x轴有两个交点,一个可以考虑△,由△就可以判断出与x轴有两个交点,所以在第四象限;或者直接用公式法(或十字相乘法)算出,由两个不同的解,进而得出点B所在象限;
(3)当x≥1时,y1的取值范围,只要把图象画出来就清晰了,难点在于要观察出是抛物线与x轴的另一个交点,理由是,由这里可以发现,b+8=0,b=-8,a+c=8,还可以发现C在A的右侧;可以确定直线经过B、C两点,看图象可以得到,x≥1时,y1大于等于最小值,此时算出二次函数最小值即可,即求出即可,已经知道b=-8,a+c=8,算出a,c即可,即是要再找出一个与a,c有关的式子,即可解方程组求出a,c,直线经过B、C两点,把B、C两点坐标代入直线消去m,整理即可得到c-a=4联立a+c=8,解得c,a,即可得出y1的取值范围.
点评:此题主要考查了二次函数的综合应用以及根与系数的关系和一次函数与二次函数交点问题等知识,根据数形结合得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a、c为实数,直线y1=(a+1)x-1,抛物线y2=x2+ax+c.
(Ⅰ)在直角坐标系中,O为坐标原点,抛物线与x轴的负半轴交于点A,与y轴的正半轴交于点B,若c=2,tan∠ABO=
12
,求抛物线的解析式;
(Ⅱ)若c>0,证明在实数范围内,对于x的同一个值,直线与抛物线对应的y1<y2均成立;
(Ⅲ)若a=-1,当-1<x<4时,抛物线与x轴有公共点,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:(1)如图,在四个正方形拼接成的图形中,以A1、A2、A3、…、A10这十个点中任意三点为顶点,共能组成
 
个等腰直角三角形.
精英家教网
(2)已知y1=-ax2-ax+1的顶点P的纵坐标为
98
,且与抛物线y2=ax2-ax-1相交于A,B两点.设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当a=
12
时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1精英家教网,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:044

已知抛物线y=2x2和直线y=ax+5.

(1)求证:抛物线与直线一定有两个不同的交点;

(2)设A(x1,y1)、B(x2,y2)是抛物线与直线的两个交点,点P是线段AB的中点,且点P的横坐标为,试用含a的代数式表示点P的纵坐标;

(3)设A,B两点的距离d=·|x1-x2|,试用含a的代数式表示d.

查看答案和解析>>

科目:初中数学 来源:2008年江西省中考数学试卷(解析版) 题型:解答题

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?

查看答案和解析>>

同步练习册答案