精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.
分析:(1)对应角相等,两三角形相似;
(2)根据相似三角形的性质证明AF•BE=AC•BC=2S;
(3)将△ACE绕O顺时针旋转90°到△CBG,边角边证明三角形全等,得出FG=EF,在证明△FBG为直角三角形,得出三边构成三角形的形状.
解答:证明:(1)∵AC=BC,∠ECF=45°,∠ACB=90°,
∴∠A=∠B=45°,∠AFC=45°+∠BCF=∠ECB=45°+∠BCF.
∴∠AFC=∠ECB.
∴△ACF∽△BEC.

(2)∵△ACF∽△BEC,
AC
BE
=
AF
BC

∴AF•BE=AC•BC.
S△ABC=
1
2
AC•BC

∴AF•BE=2S.

(3)直角三角形.
提示:方法1:将△ACE绕点C顺时针旋转90°到△BCG,使得AC与BC重合,连接FG.
可以证明△FBG是直角三角形.
方法2:将△ACE和△BCF分别以CE、CF所在直线为轴折叠,
则AC、BC的对应边正好重合与一条线段CG,连接GE、GF,则△FEG是直角三角形.
方法3:由(2)可知AF•BE=AC•BC=AC2=
1
2
AB2

设AE=a,BF=b,EF=c.
则(a+b)(b+c)=
1
2
(a+b+c)2,化简即得a2+b2=c2
所以以线段AE、EF、FB为边的三角形是以线段EF为斜边的直角三角形.
点评:综合运用了相似三角形的判定和性质,旋转的方法将AE、EF、FB巧妙地转化为三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案