【题目】如图①,已知是⊙的直径, 是上的一个动点(点与点、不重合),连接. 是的中点,作弦,垂足为.
()若点和点不重合,连接、和.当是等腰三角形时,求的度数.
()若点和点重合,如图②.探索与的数量关系并说明理由.
科目:初中数学 来源: 题型:
【题目】探究与发现:
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,
(1)试说明△ABC与△MED全等;
(2)若∠M=35°,求∠B的度数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;
……
如此进行下去,直至得C13.
若P(1,m)在C1上,则m =_________.
若P(37,n)在第13段抛物线C13上,则n =_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
在平面直角坐标系中,已知抛物线+n过点A(4,0),B (1,-3).
(1)求抛物线的表达式及顶点D的坐标;
(2)将时函数的图象记为G,点P为G上一动点,求P点纵坐标的取值范围;
(3)在(2)的条件下,若经过点C(4,-4)的直线与图象G有两个公共点,结合图象直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判断这个四边形是平行四边形的条件共有
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理(解析)
提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
当AP=AD时(如图2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA,
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系式并证明;
(2)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: ;
(3)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系为: ;
(4)当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
(2)画出AB边上的中线CD
(3)画出BC边上的高线AE
(4)点为方格纸上的格点(异于点),若,则图中的格点共有 个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com