精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣ x+1与y轴交于点D.

(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

【答案】
(1)

解:∵抛物线y=ax2+bx﹣3,

∴c=﹣3,

∴C(0,﹣3),

∴OC=3,

∵BO=OC=3AO,

∴BO=3,AO=1,

∴B(3,0),A(﹣1,0),

∵该抛物线与x轴交于A、B两点,

∴抛物线解析式为y=x2﹣2x﹣3


(2)

证明:由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴E(1,﹣4),

∵B(3,0),A(﹣1,0),C(0,﹣3),

∴BC=3 ,BE=2 ,CE=

∵直线y=﹣ x+1与y轴交于点D,

∴D(0,1),

∵B(3,0),

∴OD=1,OB=3,BD=

∴△BCE∽△BDO


(3)

解:存在,

理由:设P(1,m),

∵B(3,0),C(0,﹣3),

∴BC=3 ,PB= ,PC=

∵△PBC是等腰三角形,

①当PB=PC时,

=

∴m=﹣1,

∴P(1,﹣1),

②当PB=BC时,

∴3 =

∴m=±

∴P(1, )或P(1,﹣ ),

③当PC=BC时,

∴3 =

∴m=﹣3±

∴P(1,﹣3+ )或P(1,﹣3﹣ ),

∴符合条件的P点坐标为P(1,﹣1)或P(1, )或P(1,﹣ )或P(1,﹣3+ )或P(1,﹣3﹣


【解析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A,B,C,D,E的坐标,从而求出BC=3 ,BE=2 ,CE= ,OD=1,OB=3,BD= ,求出比值,得到 得出结论;(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:

(甲)以A为圆心,AC长为半径画弧交ABP点,则P即为所求;

(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.

对于甲、乙两人的作法,下列叙述何者正确?(    )

A. 两人皆正确

B. 两人皆错误

C. 甲正确,乙错误

D. 甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:

组号

分组

频数

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2 , 在第四组内的两名选手记为:B1、B2 , 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC的中点,连接AD,E,F分别是ADAD延长线上的点.且DE=DF,连接BF,CE,下列说法中:①△ABD和△ACD的面积相等;②∠BAD=CAD;BFCE;CE=BF,其中,正确的说法有__________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DBC的中点,DEABEDFACFBE=CF

1)求证:AD平分∠BAC

2)连接EF,求证:AD垂直平分EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:

(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC是等边三角形,BDAC,EBC延长线上的一点,且∠CED=30°.

(1)求证:DB=DE.

(2)在图中过DDFBEBEF,若CF=3,求ABC的周长.

查看答案和解析>>

同步练习册答案