分析 (1)根据∠BAC=90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE=∠2,从而得解;
(2)根据∠ACB和∠DCE的度数列出等式求出∠ACE-∠BCD=30°,再结合已知条件求出∠BCD,然后根据∠ACD=∠ACB+∠BCD代入数据计算即可得解.
解答 解:(1)∵∠BAC=90°,
∴∠1+∠2=90°,
∵∠1=4∠2,
∴4∠2+∠2=90°,
∴∠2=18°,
又∵∠DAE=90°,
∴∠1+∠CAE=∠2+∠1=90°,
∴∠CAE=∠2=18°;
(2)∵∠ACE+∠BCE=90°,
∠BCD+∠BCE=60°,
∴∠ACE-∠BCD=30°,
又∠ACE=2∠BCD,
∴2∠BCD-∠BCD=30°,
∠BCD=30°,
∴∠ACD=∠ACB+∠BCD=90°+30°=120°.
点评 本题考查了三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-$\frac{4}{3}$ab)(-3ab)2=12a2b2 | B. | (xy)8÷(xy)2=x4y4 | ||
| C. | x10÷(x7÷x2)=x5 | D. | (-4a-1)(4a-1)=16a2-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com