精英家教网 > 初中数学 > 题目详情
若点(3,4)是反比例函数y=的图象上一点,则此函数图象必经过点( )
A.(2,6)
B.(-2.6)
C.(4,-3)
D.(3,-4)
【答案】分析:根据反比例函数图象上点的坐标特征,k=12,判断各选项中的横纵坐标之积是否等于12.
解答:解:把点(3,4)代入反比例函数y=,4=,解得m2+2m+1=k=12,故此函数为y=,即xy=12,在四个选项中只有A中xy=12.
故选A.
点评:本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c经过点A(1,2)、B(2,1)和C(-2,-1)三点.
(1)求抛物线的解析式;
(2)反比例函数y=
k
x
的图象的一个分支经过点C,并且另个分支与抛物线在第一象限相交.
①求出k的值;
②反比函数y=
k
x
的图象是否经过点A和点B,试说明理由;
③若点P(a,b)是反比例函数y=
k
x
在第三象限的图象上的一个动点,连接AB、PA、PB,请问是否存在这样的一点P使△PAB的面积为3?如果存在,试求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P是反比列函数y=
kx
(k≠0)的图象上任一点,过P点分别做x轴,y轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx+c经过点A(1,2)、B(2,1)和C(-2,-1)三点.
(1)求抛物线的解析式;
(2)反比例函数y=数学公式的图象的一个分支经过点C,并且另个分支与抛物线在第一象限相交.
①求出k的值;
②反比函数y=数学公式的图象是否经过点A和点B,试说明理由;
③若点P(a,b)是反比例函数y=数学公式在第三象限的图象上的一个动点,连接AB、PA、PB,请问是否存在这样的一点P使△PAB的面积为3?如果存在,试求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年海南省中考数学模拟试卷(5)(解析版) 题型:解答题

如图,抛物线y=ax2+bx+c经过点A(1,2)、B(2,1)和C(-2,-1)三点.
(1)求抛物线的解析式;
(2)反比例函数y=的图象的一个分支经过点C,并且另个分支与抛物线在第一象限相交.
①求出k的值;
②反比函数y=的图象是否经过点A和点B,试说明理由;
③若点P(a,b)是反比例函数y=在第三象限的图象上的一个动点,连接AB、PA、PB,请问是否存在这样的一点P使△PAB的面积为3?如果存在,试求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第5章《反比例函数》好题集(08):5.2 反比例函数的图象与性质(解析版) 题型:填空题

已知点P是反比列函数y=(k≠0)的图象上任一点,过P点分别做x轴,y轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k的值为   

查看答案和解析>>

同步练习册答案