【题目】如图,AOOM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF.等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为_________.
【答案】2.
【解析】试题分析:作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,∴AB=BE,BF=BO;在△ABO与△BEN中,∠BAO=∠NBE,∠AOB=∠BNE,AB=BE,∴△ABO≌△BEN(AAS),∴BO=NE,BN=AO;∵BO=BF,∴BF=NE,在△BPF与△NPE中,∠FBP=∠ENP,∠FPB=∠EPN,BF=NE,∴△BPF≌△NPE(AAS),∴BP=NP=BN;而BN=AO,∴BP=AO=×4=2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】(1)如图1,等腰Rt△ABO放在平面直角坐标系中, 点A,B 的坐标分别是A(0,1),B(1,0).在x轴正半轴上取D(m,0),在AD右上方作等腰Rt△ADE,∠ADE=.
①求出E点的坐标(可用含m的代数式表示);
②证明对于任意正数m,点E都在直线上;
(2)将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图22-2,A(0,),B(1,0). Rt△ADE中, ∠ADE=,∠AED=. D(m,0)是x轴正半轴上任意一点,则不论m取何正数,点E都在某一条直线上,请求出这条直线的函数关系式;
(3)将(2)中Rt△AOB保持不动,取点C(2, ),在x轴正半轴上取D(m,0)(m>2), 然后在AD右上方作Rt△CDE, ∠CDE=,∠CED=.当m取不同值时,点E是否还是总在一条直线上? 若是,请求出直线对应的函数关系式,若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,有下列5个结论:① ;② ;③ ;④ ; ⑤ ,(的实数)其中正确的结论有
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;
(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;
(2)如果没有计算器,你能用什么方法抽取被检产品?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com