精英家教网 > 初中数学 > 题目详情
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示,将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示,观察图2可知:与BC相等的线段是______,∠CAC′=______°。

问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论.,

拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H,若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由。
(1)DA,90;(2)FQ=EP;证明如下;(3)HE=HF,理由如下.

试题分析:①观察图形即可发现DA′=BC,A′C=AC,DC′=BA,所以△ABC≌△AC′D,即BC=DA、∠CAC′=90°可解题;
②由全等三角形△APE≌△BGA的对应边相等知,EP=AG;同理由全等三角形△FQA≌△AGC的对应边相等知FQ=AG,所以易证EP=FQ;
③过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.
试题解析:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
∴∠CAC′=180°-∠C′AD-∠CAB=90°;
②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
又∵AF=AC,
∴△AFQ≌△CAG,
∴FQ=AG,
同理EP=AG,
∴FQ=EP.
③HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.

∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
∵∠EHP=∠FHQ,
∴Rt△EPH≌Rt△FQH.
∴HE=HF.
考点:(1)三角形全等的判定与性质;(2)相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图1,当点M在AB边上时,连接BN

①试说明:
②若∠ABC=60°,AM=4,求点M到AD的距离.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足 ∠MAN=45°,连结MC,NC,MN.

(1)填空:与△ABM相似的三角形是△       ,BM·DN=        ;(用含a的代数式表示)
(2)求∠MCN的度数;
(3)猜想线段BM,DN和MN之间的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,截去一个正方形ABFE后,使剩下的矩形对开后与原矩形相似,那么原矩形中AD:AB=         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,AB>AC,D为AB上一点,下列条件:①∠B=∠ACD,②∠ADC=∠ACB,③,④中,能判定△ABC与△ACD相似的有(    )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=(   )

A.3         B.4          C.5         D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则EF+CF的长为(      )
A.5B.4C.6D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(  )

A.1条      B.2条      C.3条      D.4条

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=       .

查看答案和解析>>

同步练习册答案