精英家教网 > 初中数学 > 题目详情

【题目】如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1= (x>0)的图象上,顶点B在函数y2= (x>0)的图象上,∠ABO=30°,则 =

【答案】﹣
【解析】解:如图,
Rt△AOB中,∠B=30°,∠AOB=90°,
∴∠OAC=60°,
∵AB⊥OC,
∴∠ACO=90°,
∴∠AOC=30°,
设AC=a,则OA=2a,OC= a,
∴A( a,a),
∵A在函数y1= (x>0)的图象上,
∴k1= aa=
Rt△BOC中,OB=2OC=2 a,
∴BC= =3a,
∴B( a,﹣3a),
∵B在函数y2= (x>0)的图象上,
∴k2=﹣3a a=﹣3
=﹣
所以答案是:﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(
A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017通辽)小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2
(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= , OC△OA=

(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;

(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,Rt△PAB的直角顶点P(3,4)在函数y= (x>0)的图象上,顶点A、B在函数y= (x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为SOPA , △PAB的面积为SPAB , 设w=SOPA﹣SPAB . ①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC,及矩形表演台BCDE四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以AB,AC为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE 中,CD=10米,三角形水域ABC的面积为 平方米,设∠BAC=θ.
(1)求BC的长(用含θ的式子表示);
(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

查看答案和解析>>

同步练习册答案