精英家教网 > 初中数学 > 题目详情
6.如图,已知平行四边形ABCD中,点E是对角线AC上的一点,且满足AE:EC=1:3,连接BE并延长,交AD于点G,交CD的延长线于点F,求AG:GD的值.

分析 由平行四边形ABCD的性质推知AD∥BC,且AD=BC,则易得△AEG∽△CEB,由相似三角形的对应边成比例得到AG:BC的值,继而求得AG:GD的值.

解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴△AEG∽△CEB,
∴$\frac{AE}{EC}$=$\frac{AG}{BC}$,即$\frac{1}{3}$=$\frac{AG}{BC}$,
∴$\frac{1}{3}$=$\frac{AG}{AD}$,
∴AG:GD=1:2.

点评 此题考查了平行四边形的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,△ABC内接于⊙O,AB=AC,过点C作⊙O的直径CD,连接BD.
(1)求证:∠BDC=2∠ABD;
(2)连接OA,求证:OA∥BD;
(3)在(2)的条件下,过点D作DE⊥AB,垂足为E,延长DE交AC于F,当F为AC的中点时,若DE=4,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车距B地的路程分别为y(km),y(km),甲车行驶的时间为x(h),y,y与x之间的函数图象如图所示,结合图象解答下列问题:
(1)甲车的速度是80km/h,乙车休息了0.5h;
(2)求乙车与甲车相遇后y关于x的函数解析式,并写出自变量x的取值范围;
(3)当甲车出发多少小时后,两车相距80km?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,直线AB、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠BOC、∠BOF的度数.
解:∵OE⊥CD(已知)
∴∠DOE=90°(垂直的定义)
∵∠1=50°(已知)
∴∠AOD=∠DOE-∠1=40°
∵∠BOC与∠AOD为对顶角(已知)
∴∠BOC=∠AOD=∠40°(对顶角相等)
∵OD平分∠AOF(已知)
且∠AOD=40°(已求)
∴∠AOF=2∠AOD=80°(角平分线定义)
∵∠BOF+∠AOF=180°(邻补角定义)
∴∠BOF=180°-∠AOF=100°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,∠A=60°,BE1平分∠ABC,CE1平分∠ACD,则∠E1=30°;BE2平分∠E1BC,CE2平分∠E1CD,则∠E2=15°;…;BEn平分∠En-1BC,CEn平分∠En-1CD,则∠En=$\frac{60°}{{2}^{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,将图1的正方形纸片沿对角线剪开,得到图2的两张三角形纸片,再将三角形纸片摆成图3所示的图形,使得点B(E)重合.
(1)求证:△ABD≌△CBF;
(2)猜测AD与CF的位置关系,并说明理由;
(3)若∠ABF=120°,请判断△BGH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.
(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;
(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.2016年9月底,雪山镇风力电站每天能发电约74850000度,该数据用科学记数法表示为7.485×107 度.

查看答案和解析>>

同步练习册答案