精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是
4-
8
9
π
4-
8
9
π
(结果保留π)
分析:由于BC切⊙A于D,连接AD可知AD⊥BC,从而可求出△ABC的面积;根据圆周角定理,易求得∠EAF=2∠EPF=80°,圆的半径为2,可求出扇形AEF的面积;图中阴影部分的面积=△ABC的面积-扇形AEF的面积.
解答:解:连接AD,

∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=
80π•22
360
=
8
9
π,
S△ABC=
1
2
AD•BC=
1
2
×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4-
8
9
π.
故答案为:4-
8
9
π.
点评:本题考查了扇形面积的计算,同时用到了圆周角定理和切线的概念及性质等知识,解决本题的关键是利用圆周角与圆心角的关系求出扇形的圆心角的度数,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案