精英家教网 > 初中数学 > 题目详情
(2013•莒南县二模)如图,一渔船以32千米/时的速度向正北航行,在A处看到灯塔S在渔船的北偏东30°,半小时后航行到B处看到灯塔S在船的北偏东75°,若渔船继续向正北航行到C处时,灯塔S和船的距离最短,求灯塔S与C的距离.(计算过程和结果一律不取近似值)
(sin75°=
6
-
2
4
分析:先过点B作BD⊥AS于点D,根据∠A=30°,求出BD的长,再根据∠BSA=∠CBS-∠A,求出∠BSA,最后根据SC=sin∠CBS×BS,代入计算即可.
解答:解:过点B作BD⊥AS于点D,
∵∠A=30°,AB=32×
1
2
=16(千米),
∴BD=8(千米),
∵∠BSA=∠CBS-∠A=75°-30°=45°,
∴BS=
BD
sin45°
=
8
2
2
=8
2
(千米),
∴SC=sin∠CBS×BS=sin75°×8
2
=
6
-
2
4
×8
2
=4
3
-4(千米);
答:灯塔S与C的距离是(4
3
-4)千米.
点评:此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莒南县二模)如图,在⊙O中,OA、OB是半径,且OA⊥OB,OA=6,点C是AB上异于A、B的动点.过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.
(1)求证:四边形OGCH为平行四边形;
(2)①当点C在AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;若不存在,请说明理由;
②求
13
CD2+CH2之值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)若四边形四角度数之比为1:2:2:3,则此四边形为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)如图所示的三角形纸片中,∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE,则BE的长为(  )

查看答案和解析>>

同步练习册答案