证明:(1)连接CD,
∵∠ACB=90゜,AC=BC,
∴∠CBA=45°,CD平分∠ACB,
∴∠DCB=45°,
∴∠DBN=∠MOD=90°+45°=135°,
∵∠ACB=90°,D为AB的中点,
∴CD=BD,CD⊥AB,
∵DM⊥DN,
∴∠CDB=∠MDN=90°,
∴都减去∠BDM得:∠CDM=∠BDN,
在△CDM和△DBN中,

,
∴△CDM≌△DBN(ASA),
∴DM=DN.

(2)解:∵△CDM≌△DBN,
∴∠DMC=∠DNB=15°,CM=BN=1,
∵∠MDN=90°,DN=DM,
∴∠MND=45°,
∴∠MNC=30°,
∵∠ACB=∠MCN=90°,
∴MN=2CN=2.
分析:(1)连接CD,求出CD=BD,∠CDM=∠BDN,∠MCD=∠DBN,证△DCM≌△DBN,推出即可;
(2)求出CM=BN=1,∠MNC=30°,根据含30度角的直角三角形性质推出即可.
点评:本题考查了全等三角形的性质和判定,直角三角形性质,等腰三角形性质,含30度角的直角三角形性质,等腰直角三角形性质的应用,主要考查学生的推理能力.