精英家教网 > 初中数学 > 题目详情
当m=
2
2
时,关于x的方程(m+2)x|m|-1+6=0是一元一次方程.
分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).
解答:解:∵方程(m+2)x|m|-1+6=0是一元一次方程,
∴|m|-1=1,且m+2≠0,
解得m=2,
故答案为:2.
点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•椒江区二模)当m=
2
2
时,关于x的方程x2-m-mx+1=0是一元一次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以等边△OAB的边OB所在直线为x轴,点O为坐标原点,使点A在第一象限建立平面直角坐标系,其中△OAB边长为4个单位,点P从O点出发沿折线OAB向B点以2个单位/秒的速度向终点B点运动,点Q从B点出发以1个单位/秒的速度向终点O点运动,两个点同时出发,运动时间为t(秒).
(1)请用t表示点P的坐标
(t,
3
t)或(t,4
3
-
3
t)
(t,
3
t)或(t,4
3
-
3
t)
和点Q的坐标
(4-t,0)
(4-t,0)
,其中t的取值范围是
0≤t≤2或2<t≤4
0≤t≤2或2<t≤4

(2)当t=
4
5
4
5
时,PQ⊥OA;当t=
16
5
16
5
时,PQ⊥AB;当t=
2
2
时,PQ⊥OB;
(3)△OPQ面积为S,求S关于t的函数关系式并指出S的最大值;
(4)若直线PQ将△OAB分成面积比为3:5两部分?求此时直线PQ的解析式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区模拟)已知点A,B,C是半径为2的圆0上的三个点,其中点A是劣弧BC上的一动点(不与点B,C重合),连接AB、AC,点D、E分别在弦AB,AC上,连接OD、OE.

(1)当点A为劣弧BC的中点时,且满足AD=CE(如图①)
①求证:OD=OE;
②当BC=2
2
时,求∠DOE的度数;(如图②)
(2)当BC=2
2
,且OD⊥AB,OE⊥AC时(如图③),设BD=x,△DOE的面积为y,求y关于x的函数关系式,并求出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(k+1)x+
1
4
k2+1=0
的两根是一个矩形两条邻边的长,那么当k=
2
2
时,矩形的对角线长为
5

查看答案和解析>>

同步练习册答案