精英家教网 > 初中数学 > 题目详情
如图,梯形ABCD中,AB∥CD,∠DAB=∠CBA=45°,AB=10cm,CD=4cm,等腰Rt△PMN的直角边MN=5cm,点A与点N重合,MN和AB在一条直线上,若等腰梯形ABCD不动,等腰Rt△PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止,此时,边PN与梯形ABCD的边交于点G.
(1)设移动时间为t秒,当直线PM过点D点时,求t的值.
(2)在整个运动过程中,设运动时间为t秒时,△PMN与梯形ABCD重叠部分的面积为ycm2,求y与t之间的函数表达式.
考点:等腰梯形的性质,动点问题的函数图象,等腰直角三角形
专题:动点型
分析:(1)如图1,过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,先AAS证明△ADE≌△BCF,再根据等腰梯形的性质和等腰直角三角形的性质,即可得到当直线PM过点D点时,t=MN+AM,依此即可求解;
(2)分0<t<5,5≤t<8,8≤t<10三种情况讨论可求y与t之间的函数表达式.
解答:解:(1)如图1,过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,
∵梯形ABCD中,AB∥CD,∠DAB=∠CBA=45°,
∴DE=CF,
在△ADE和△BCF中,
∠DAE=∠CBF
∠DEA=∠CFB=90°
DE=CF

∴△ADE≌△BCF(AAS),
∴AE=BF,
∵AB=10cm,CD=4cm,
∴AE=BF=3cm,
∵△ADE是等腰直角三角形,
∴DE=AE=3cm,
如图2,当直线PM过点D点时,AM=AE=3cm,
∴t=MN+AM=3+5=8(s);

(2)当0<t<5时,y=
1
2
1
2
t=
1
4
t2
当5≤t<8时,y=
1
2
[5+t-5)]×
1
2
[5+t-5)]-
1
2
(t-5)(t-5)=-
1
4
t2+5t-12.5;
当8≤t<10时,y=5×5÷2-(5-3)×(5-3)÷2=12.5-2=10.5.
点评:考查了等腰梯形的性质,动点问题的函数图象和等腰直角三角形,注意分类思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

当x=
 
时,4x+2=3x-1.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c的开口向下,交x轴的正半轴于(1,0),则下列结论错误的是(  )
A、abc<0
B、a-b+c<0
C、2a+b>0
D、a+c<0

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察数表.

根据其中的规律,在数表中的方框内填入适当的数.
(2)如果规定符号“*”的意义是a*b=ab,①求(-3)*2的值,②a*b是否满足交换律,是请说明,否请举反例说明.
(3)已知|x+1|=4,(y+2)2=4,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,在△ABC中,∠A=60°,∠C=80°,则∠B=(  )
A、60°B、30°
C、20°D、40°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,能判定△ABC≌△DEF的是
 
(填写序号).
①AC=DF  ②BC=EF  ③∠B=∠E  ④∠C=∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:

102•108=
 
;(m23=
 
;(-a)4÷(-a)=
 
;(-b32=
 

查看答案和解析>>

同步练习册答案