精英家教网 > 初中数学 > 题目详情

【题目】下列说法正确的是(  )
A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
B.一组数据6,8,7,9,7,10的众数和中位数都是7
C.为了解全国中学生的心理健康情况,应该采用全面调查的方式
D.若甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定

【答案】D
【解析】解:A、一个游戏的中奖率是1%,则做100次这样的游戏可能中奖,可能不中奖,故A错误;
B、一组数据6,8,7,9,7,10的众数是7,中位数是7.5,故B错误;
C、为了解全国中学生的心理健康情况,应该采用抽样调查的方式,故C错误;
D、甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定,故D正确;
故选:D.
【考点精析】关于本题考查的概率的意义,需要了解任何事件的概率是0~1之间的一个确定的数,它度量该事情发生的可能性.小概率事件很少发生,而大概率事件则经常发生.知道随机事件的概率有利于我们作出正确的决策才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在数轴上表示-2的点离开原点的距离等于( )
A.2
B.-2
C.±2
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A.(﹣2a3=﹣2a3B.(﹣a2(﹣a3a6

C.a+b2a2+b2D.a+b)(ab)=a2b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x=2是方程k(2x-1)=kx+7的解,那么k的值是(
A.1
B.-1
C.7
D.-7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.

(1)求m的值和直线AB的函数关系式;

(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.

①设△OPQ的面积为S,写出S与t的函数关系式;

②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点O′恰好落在反比例函数的图象上?若存在,求O′的坐标和t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数L1y=ax2﹣2ax+a+3a0)和二次函数L2y=﹣ax+12+1

a0)图象的顶点分别为MN,与y轴分别交于点EF

1)函数y=ax2﹣2ax+a+3a0)的最小值为______,当二次函数L1L2y值同时随着x的增大而减小时,x的取值范围是______

2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).

3)若二次函数L2的图象与x轴的右交点为Am0),当△AMN为等腰三角形时,求方程﹣ax+12+1=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.

(1)求∠CAO′的度数.

(2)显示屏的顶部B′比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.
(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?
①丙抢到金额为1元的红包;
②乙抢到金额为4元的红包
③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;
(2)记金额最多、居中、最少的红包分别为A,B,C.
①求出甲抢到红包A的概率;
②若甲没抢到红包A,则乙能抢到红包A的概率又是多少?

查看答案和解析>>

同步练习册答案