精英家教网 > 初中数学 > 题目详情

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

【答案】(1)见解析 (2)见解析 (3)

【解析】分析:(1)如图1中,欲证明BD=EC,只要证明DAB≌△EAC即可;

(2)如图2中,延长DCE,使得DB=DE.首先证明BDE是等边三角形,再证明ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转得到AG,连接CG、EG、EF、FG,延长EDM,使得DM=DE,连接FM、CM.想办法证明AFE≌△AFG,可得∠EAF=FAG=m°.

(1)证明:如图1中,

∵∠BAC=DAE,

∴∠DAB=EAC,

DABEAC中,

∴△DAB≌△EAC,

BD=EC.

(2)证明:如图2中,延长DCE,使得DB=DE.

DB=DE,BDC=60°,

∴△BDE是等边三角形,

∴∠BD=BE,DBE=ABC=60°,

∴∠ABD=CBE,

AB=BC,

∴△ABD≌△CBE,

AD=EC,

BD=DE=DC+CE=DC+AD.

AD+CD=BD.

(3)如图3中,将AE绕点E逆时针旋转得到AG,连接CG、EG、EF、FG,延长EDM,使得DM=DE,连接FM、CM.

由(1)可知EAB≌△GAC,

∴∠1=2,BE=CG,

BD=DC,BDE=CDM,DE=DM,

∴△EDB≌△MDC,

EM=CM=CG,EBC=MCD,

∵∠EBC=ACF,

∴∠MCD=ACF,

∴∠FCM=ACB=ABC,

∴∠1=3=2,

∴∠FCG=ACB=MCF,

CF=CF,CG=CM,

∴△CFG≌△CFM,

FG=FM,

ED=DM,DFEM,

FE=FM=FG,

AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=FAG=m°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据市卫生防疫部门的要求,游泳池必须定期换水后才能对外开放.在换水时需要经“排水—清冼—灌水”的过程.某游泳馆从早上7:00开始对游泳池进行换水,已知该游泳池的排水速度是灌水速度的1.6倍,其中游泳池内剩余的水量y(m3)与换水时间x(h)之间的函数图象如图所示,根据图象解答下列问题:

(1)填空:该游泳池清洗需要   小时;

(2)求排水过程中的y(m3)x(h)之间的函数关系式,并写出自变量x的取值范围;

(3)若该游泳馆在换水结束后30分钟才能对外开放,试问游泳爱好者小明能否在中午12:40进入该游泳馆游泳?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.

(1)画出△ABC关于直线MN对称的△A1B1C1

(2)直接写出AA1的长度;

(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:在△ABC中,AB、BC、AC三边的长分别为,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上:   

思维拓展:

(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别a、a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CE是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线,交CE延长线于点A,连接DE,过点O作OB∥ED,交AD的延长线于点B,连接BC.

(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO= ,求AO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度数;

(2)求证:CG平分OCD;

(3)当O为多少度时,CD平分OCF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四舍五入到个位的值记为<x>,即当n为非负整数时,若,则<x>n,如<0.46>=0<3.67>=4。给出下列关于<x>的结论:

①<1.493>=1

②<2x>=2<x>

,则实数x的取值范围是

x≥0m为非负整数时,有

其中,正确的结论有  (填写所有正确的序号)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,FCA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(  )

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

同步练习册答案