精英家教网 > 初中数学 > 题目详情
如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是(  )
分析:根据有理数的加法法则(同号两数相加,取原来的复合式,并把绝对值相加,异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值小)和有理数的乘法法则进行判断即可.
解答:A、∵a+b>0,
∴当a>0,b<0时,|a|>|b|,故本选项正确;
B、∵a+b>0,
∴当a<0,b>0时,|a|<|b|,故本选项错误;
C、∵ab<0,
∴a b一正一负,故本选项错误;
D、∵a+b>0,
∴不能a b都是负数,当a b都是负数时a|b<0,故本选项错误.
故选A.
点评:本题考查了有理数的加法和乘法的应用,主要考查学生的理解能力和辨析能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果有理数a,b满足|ab-2|+|1-a|=0,
(1)求a、b的值;
(2)试求
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2010)(b+2010)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果有理数a,b满足|a-2|+|1-b|=0
(1)求a,b 的值;
(2)运用题(1)中的a,b的值阅读理解:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…
∴计算:
1
1×2
+
1
2×3
+
1
3×4
+
+
1
2004×2005

=
1
1
-
1
2
+
1
2
-
1
3
+
1
4
+
1
2004
-
1
2005
=1-
1
2005
=
2004
2005

理解以上方法的真正含义:
试求
1
a×b
+
1
(a+1)×(b+1)
+
1
(a+2)×(b+2)
+
1
(a+3)×(b+3)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果有理数x,y满足条件(x-1)2+(y+2)2=0,那么式子(x+y)2010=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如果有理数m、n满足等式-m2+n+5=-m2-3n+1,则n=
-1
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如果有理数a,b满足条件ab>0,那么a÷b的值是(  )

查看答案和解析>>

同步练习册答案