精英家教网 > 初中数学 > 题目详情
8.计算:$\sqrt{0.16}$×$\sqrt{1\frac{9}{16}}$+$\sqrt{1{7}^{2}-{8}^{2}}$÷$\sqrt{{3}^{2}+{4}^{2}}$.

分析 结合二次根式混合运算的运算法则进行求解即可.

解答 解:原式=0.4×$\frac{5}{4}$+15÷5
=0.5+3
=3.5.

点评 本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式混合运算的运算法则.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=4$\sqrt{2}$时,
①在P1(0,-3),P2(4,6),P3(4$\sqrt{2}$,2)中可以成为正方形ABCD的“等距圆”的圆心的是P2,P3
②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为(4,-2)或P(-4,6);
(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P 在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是0<r<$\sqrt{2}$或r>2$\sqrt{17}$+2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.
(1)若∠A=50°,求∠EBC的度数;
(2)若△ABC的周长为40cm,一边长为15cm,求△BCE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列图形中既是中心对称图形,又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)24+(-14)+(-16)+6
(2)3×(-12)-(-5)÷(-1$\frac{1}{4}$)
(3)-14-$\frac{1}{3}$×[4-(-2)3]
(4)(-3)2013×(-$\frac{1}{3}$)2014

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若2x3ym与-3xny2是同类项,则(m-n)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若代数式x2+2kx+$\frac{1}{4}$是完全平方式,则k的值是±$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知一元二次方程3x2-5x+1=0,其中二次项系数是3,一次项系数是-5,常数项是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知△ABC中,∠BAC=90°,AB=AC,B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.
求证:(1)△ABD≌△CAE
(2)BD=AE.

查看答案和解析>>

同步练习册答案