精英家教网 > 初中数学 > 题目详情
(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

【答案】分析:(1)把A的坐标代入反比例函数解析式,即可得到关于k的方程,从而求得k的值.得到反比例函数解析式以及A的坐标,再利用待定系数法即可求得正比例函数解析式;
(2)证明△COE与△ODE相似,求得相似比,根据相似三角形面积的比等于相似比的平方即可求解.
解答:解:(1)由图知k>0,a>0,
∵点A(-1,2-k2)在图象上,
∴2-k2=-k,即k2-k-2=0,解得k=2(k=-1舍去),
得反比例函数为
此时A(-1,-2),代入y=ax,解得a=2,
∴正比例函数为y=2x.

(2)过点B作BF⊥x轴于F.
∵A(-1,-2)与B关于原点对称,
∴B(1,2),即OF=1,BF=2,得OB=
由图,易知Rt△OBF∽Rt△OCD,
∴OB:OC=OF:OD,而OD==
∴OC==2.5.
由Rt△COE∽Rt△ODE,

所以△COE的面积是△ODE面积的5倍.
点评:本题主要考查了待定系数法求函数解析式,并且运用了相似三角形的性质,相似三角形面积的比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月浙江省宁波市七中九年级月考数学试卷(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2010年四川省绵阳市中考数学试卷(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案