精英家教网 > 初中数学 > 题目详情
(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

【答案】分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;
(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;
(3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.
解答:解:(1)∵抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),

解得,b=-1.
所以抛物线的解析式为,顶点D的坐标为(-1,).

(2)设抛物线的对称轴与x轴交于点M,
因为EF垂直平分BC,即C关于直线EG的对称点为B,
连接BD交于EF于一点,则这一点为所求点H,使DH+CH最小,
即最小为:DH+CH=DH+HB=BD=

∴△CDH的周长最小值为CD+DH+CH=
设直线BD的解析式为y=k1x+b1,则
解得:
所以直线BD的解析式为y=x+3;
由于BC=2,CE=BC=,Rt△CEG∽Rt△COB,
得CE:CO=CG:CB,
所以CG=2.5,GO=1.5,G(0,1.5);
同理可求得直线EF的解析式为y=x+
联立直线BD与EF的方程,解得使△CDH的周长最小的点H();

(3)设K(t,),-4<t<2、过K作x轴的垂线交EF于N;
则KN=yK-yN=-(t+)=-
所以S△EFK=S△KFN+S△KNE=KN(t+3)+KN(1-t)=2KN=-t2-3t+5=-(t+2+
即当t=-时,△EFK的面积最大,最大面积为,此时K(-).
点评:此题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月浙江省宁波市七中九年级月考数学试卷(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

同步练习册答案