精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,抛物线y=-x2-(m-1)x+m2-6交x轴负半轴于点A,交y轴正半轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.
(1)求抛物线的解析式;
(2)点D是y轴正半轴上一点,且在B点上方,若∠DCB=∠CAB,请你猜想并证明CD与AC的位置关系;
(3)设与△AOB重合的△EFG从△AOB的位置出发,沿x轴负方向平移t个单位长度(0<t≤3)时,△EFG与△ABC重叠部分的面积为S,求S与t之间的函数关系式.

解:(1)∵抛物线y=-x2-(m-1)x+m2-6与y轴交于点B(0,3),
∴m2-6=3.
∴m=±3.
∵抛物线的顶点在第二象限,
∴m=3.
∴抛物线的解析式为y=-x2-2x+3.
(2)猜想:CD⊥AC,如图(1):

证明如下:
∵A(-3,0),B(0,3),C(-1,4),
∴AB=3,AC=2,BC=
∴AB2+BC2=AC2
∴∠ABC=90°,
∴∠CAB+∠ACB=90°,
又∵∠CAB=∠DCB,
∴∠DCB+∠ACB=90°,
∴CD⊥AC.
(3)设直线AC的解析式为y=kx+b,
将A(-3,0),C(-1,4)代入可得:
解得:
即直线AC的解析式为y=2x+6.
过B作BK∥x轴,交AC于点K,
则点K的坐标为(-,3),
①当0<t<时,如图(2),EF交AB于点Q,GF交AC于点N,过N做MP∥FE交x轴于P点,交BF的延长线点M,

由△AGN∽△KFN,得

解得PN=2t,
则S阴影=S△FGE-S△QAE-S△AGN==-t2+3t.

②当≤t≤3时,如图(3),EF交AB于点N,交AC于点M,BF交AC于点P,

由△AME∽△PMF,


解得ME=2(3-t),
∴S(3-t)×
综上所述:S=
分析:(1)将点B的坐标代入可得出m的值,继而得出抛物线的解析式;
(2)分别求出点A、B、C的坐标,根据勾股定理的逆定理可判断出∠ABC=90°,继而利用等量代换可得出∠DCB+∠ACB=90°,继而得出结论.
(3)过点B作BF∥x轴,交AC于点K,求出点K的坐标,然后根据K的横坐标,可分类讨论,①当0<t<时,②当≤t≤3时,分别表示出阴影部分的面积即可.
点评:本题属于二次函数的综合题,涉及了待定系数法求函数解析式、勾股定理的逆定理及分段函数的知识,综合考察的知识点较多,对于此类综合题目,往往前两问都比较简单,同学们不要碰到这样的综合题就退缩.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案