精英家教网 > 初中数学 > 题目详情
在四边形中ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD可以是(    )。(只要写出一种即可)
矩形(等腰梯形),(答案不唯一)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.
应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为
152
152

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形中ABCD,AD∥BC,E、F分别在边AB、BC上,且∠1=∠2.请你将下面证明过程补充完整,并在相应的括号内注明理由.
证明:∵AD∥BC,
∴∠1=
∠3
∠3
两直线平行,内错角相等
两直线平行,内错角相等
).
又∵∠1=
∠2
∠2

∴∠2=
∠3
∠3
等量代换
等量代换
).
∴EF∥AC(
同位角相等,两直线平行
同位角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.

探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,分析发现∠BOC=90°+
1
2
∠A,理由如下:
∵BO和CO分别是∠ABC,∠ACB的角平分线
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)
(4)运用:如图5,五边形ABCDE中,∠BCD、∠EDC的外角分别是∠FCD、∠GDC,CP、DP分别平分∠FCD和∠GDC且相交于点P,若∠A=140°,∠B=120°,∠E=90°,则∠CPD=
95
95
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形纸片ABCD中,已知:AD∥BC,AB∥CD,∠B=90°,现将四边形纸片ABCD对折,折痕为PF(点P在BC上,点F在DC上),使顶点C落在四边形ABCD内一点C′,PC′的延长线交AD于M,再将纸片的另一部分对折(折痕为ME),使顶点A落在直线PM上一点A′.
(1)填空:
因为AD∥BC,(已知)
所以∠B+∠A=180°
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又因为∠B=90°(已知)
所以∠A=
90
90
度.
则:∠EA′M=
90
90
度.
又因为AB∥CD(已知)
同理:∠FC′P=∠C=
90
90
度.
所以∠EA′M
=
=
∠FC′P(填“<”或“=”或“>”)
所以
EA′
EA′
FC′
FC′
理由:
内错角相等,两直线平行
内错角相等,两直线平行

(2)ME与PF平行吗?请说明理由.

查看答案和解析>>

同步练习册答案