精英家教网 > 初中数学 > 题目详情

直线分别交x轴、y轴于AB两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线yax2bxc经过ACD三点.

(1) 写出点ABCD的坐标;

(2) 求经过ACD三点的抛物线表达式,并求抛物线顶点G的坐标;

(3) 在直线BG上是否存在点Q,使得以点ABQ为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

图1

(1)A(3,0),B(0,1),C(0,3),D(-1,0).

(2)因为抛物线yax2bxc经过A(3,0)、C(0,3)、D(-1,0) 三点,

所以  解得 

所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).

(3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG

因为图形在旋转过程中,对应线段的夹角等于旋转角,所以ABCD.因此ABBG,即∠ABQ=90°.

因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么

Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:

①当时,.解得.所以

②当时,.解得.所以

图2                         图3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•拱墅区一模)如图,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于A,B两点,点P(a,b)是反比例函数y=
1
2x
在第一象限内的任意一点,过点P分别作PM⊥x轴于点M,PN⊥y 轴于点N,PM,PN分别交直线AB于E,F,有下列结论:①AF=BE;②图中的等腰直角三角形有4个;③S△OEF=
1
2
(a+b-1);④∠EOF=45°.其中结论正确的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线数学公式分别交x轴、y轴于B、A两点,抛物线L:y=ax2+bx+c的顶点G在x轴上,且过(0,4)和(4,4)两点.
(1)求抛物线L的解析式;
(2)抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由;
(3)将抛物线L沿x轴平行移动得抛物线L1,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L1上.试问这样的抛物线L1是否存在,若存在,求出L1对应的函数关系式,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市顺义区李桥中学九年级(上)第三次月考数学试卷(解析版) 题型:解答题

如图,直线分别交x轴、y轴于B、A两点,抛物线L:y=ax2+bx+c的顶点G在x轴上,且过(0,4)和(4,4)两点.
(1)求抛物线L的解析式;
(2)抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由;
(3)将抛物线L沿x轴平行移动得抛物线L1,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L1上.试问这样的抛物线L1是否存在,若存在,求出L1对应的函数关系式,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年重庆市一中中考数学二模试卷(解析版) 题型:解答题

如图,直线分别交x轴、y轴于B、A两点,抛物线L:y=ax2+bx+c的顶点G在x轴上,且过(0,4)和(4,4)两点.
(1)求抛物线L的解析式;
(2)抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由;
(3)将抛物线L沿x轴平行移动得抛物线L1,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L1上.试问这样的抛物线L1是否存在,若存在,求出L1对应的函数关系式,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(黑龙江黑河、齐齐哈尔、大兴安岭卷)数学(解析版) 题型:解答题

如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,

且AB:AC=1:2

(1)求A、C两点的坐标;

(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;

(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案