直线
分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.
(1) 写出点A、B、C、D的坐标;
(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;
(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
![]()
图1
(1)A(3,0),B(0,1),C(0,3),D(-1,0).
(2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,
所以
解得
所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).
(3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG.
因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°.
因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么
.
Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:
①当
时,
.解得
.所以
,
.
②当
时,
.解得
.所以
,
.
![]()
图2 图3
科目:初中数学 来源: 题型:
| 1 |
| 2x |
| 1 |
| 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2010-2011学年北京市顺义区李桥中学九年级(上)第三次月考数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2009年重庆市一中中考数学二模试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(黑龙江黑河、齐齐哈尔、大兴安岭卷)数学(解析版) 题型:解答题
如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程
的两个根,点C在x轴负半轴上,
且AB:AC=1:2
![]()
(1)求A、C两点的坐标;
(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com